20 research outputs found

    Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients.

    Get PDF
    Oxidative stress is involved in the pathogenesis of colon cancer. We wanted to elucidate at which stage of the disease this phenomenon occurs. In the examined groups of patients with colorectal cancer (CRC, n = 89), benign adenoma (AD, n = 77) and healthy volunteers (controls, n = 99), we measured: vitamins A, C and E in blood plasma, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanine (8-oxoGua) in leukocytes and urine, leukocyte 8-oxoGua excision activity, mRNA levels of APE1, OGG1, 8-oxo-7,8-dihydrodeoxyguanosine 5'-triphosphate pyrophosphohydrolase (MTH1) and OGG1 polymorphism. The vitamin levels decreased gradually in AD and CRC patients. 8-OxodG increased in leukocytes and urine of CRC and AD patients. 8-OxoGua was higher only in the urine of CRC patients. 8-OxoGua excision was higher in CRC patients than in controls, in spite of higher frequency of the OGG1 Cys326Cys genotype, encoding a glycosylase with decreased activity. mRNA levels of OGG1 and APE1 increased in CRC and AD patients, which could explain increased 8-oxoGua excision rate in CRC patients. MTH1 mRNA was also higher in CRC patients. The results suggest that oxidative stress occurs in CRC and AD individuals. This is accompanied by increased transcription of DNA repair genes, and increased 8-oxoGua excision rate in CRC patients, which is, however, insufficient to counteract the increased DNA damage

    Oxidative damage to DNA and antioxidant status in aging and age-related diseases

    No full text
    Aging is a complex process involving morphologic and biochemical changes in single cells and in the whole organism. One of the most popular explanations of how aging occurs at the molecular level is the oxidative stress hypothesis. Oxidative stress leads in many cases to an age-dependent increase in the cellular level of oxidatively modified macromolecules including DNA, and it is this increase which has been linked to various pathological conditions, such as aging, carcinogenesis, neurodegenerative and cardiovascular diseases. It is, however, possible that a number of short-comings associated with gaps in our knowledge may be responsible for the failure to produce definite results when applied to understanding the role of DNA damage in aging and age-related diseases

    The effect of oxidative stress on nucleotide-excision repair in colon tissue of newborn piglets.

    Get PDF
    Nucleotide-excision repair (NER) is important for the maintenance of genomic integrity and to prevent the onset of carcinogenesis. Oxidative stress was previously found to inhibit NER in vitro, and dietary antioxidants could thus protect DNA not only by reducing levels of oxidative DNA damage, but also by protecting NER against oxidative stress-induced inhibition. To obtain further insight in the relation between oxidative stress and NER activity in vivo, oxidative stress was induced in newborn piglets by means of intra-muscular injection of iron (200mg) at day 3 after birth. Indeed, injection of iron significantly increased several markers of oxidative stress, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels in colon DNA and urinary excretion of 8-oxo-7,8-dihydroguanine (8-oxoGua). In parallel, the influence of maternal supplementation with an antioxidant-enriched diet was investigated in their offspring. Supplementation resulted in reduced iron concentrations in the colon (P=0.004) at day 7 and a 40% reduction of 8-oxodG in colon DNA (P=0.044) at day 14 after birth. NER capacity in animals that did not receive antioxidants was significantly reduced to 32% at day 7 compared with the initial NER capacity on day 1 after birth. This reduction in NER capacity was less pronounced in antioxidant-supplemented piglets (69%). Overall, these data indicate that NER can be reduced by oxidative stress in vivo, which can be compensated for by antioxidant supplementation

    Ferroportin expression in haem oxygenase 1-deficient mice

    No full text
    International audienceHO1 (haem oxygenase 1) and Fpn (ferroportin) are key proteins for iron recycling from senescent red blood cells and therefore play a major role in controlling the bioavailability of iron for erythropoiesis. Although important aspects of iron metabolism in HO1-deficient (Hmox1-/-) mice have already been revealed, little is known about the regulation of Fpn expression and its role in HO1 deficiency. In the present study, we characterize the cellular and systemic factors influencing Fpn expression in Hmox1-/- bone marrow-derived macrophages and in the liver and kidney of Hmox1-/- mice. In Hmox1-/- macrophages, Fpn protein was relatively highly expressed under high levels of hepcidin in culture medium. Similarly, despite high hepatic hepcidin expression, Fpn is still detected in Kupffer cells and is also markedly enhanced at the basolateral membrane of the renal tubules of Hmox1-/- mice. Through the activity of highly expressed Fpn, epithelial cells of the renal tubules probably take over the function of impaired system of tissue macrophages in recycling iron accumulated in the kidney. Moreover, although we have found increased expression of FLVCR (feline leukaemia virus subgroup C receptor), a haem exporter, in the kidneys of Hmox1-/- mice, haem level was increased in these organs. Furthermore, we show that iron/haem-mediated toxicity are responsible for renal injury documented in the kidneys of Hmox1-/- mice

    PARP-1 Expression is Increased in Colon Adenoma and Carcinoma and Correlates with OGG1

    No full text
    <div><p>The ethiology of colon cancer is largely dependent on inflammation driven oxidative stress. The analysis of 8-oxodeoxyguanosine (8-oxodGuo) level in leukocyte DNA of healthy controls (138 individuals), patients with benign adenomas (AD, 137 individuals) and with malignant carcinomas (CRC, 169 individuals) revealed a significant increase in the level of 8-oxodGuo in leukocyte DNA of AD and CRC patients in comparison to controls. The counteracting mechanism is base excision repair, in which OGG1 and PARP-1 play a key role. We investigated the level of PARP-1 and OGG1 mRNA and protein in diseased and marginal, normal tissues taken from AD and CRC patients and in leukocytes taken from the patients as well as from healthy subjects. In colon tumors the PARP-1 mRNA level was higher than in unaffected colon tissue and in polyp tissues. A high positive correlation was found between PARP-1 and OGG1 mRNA levels in all investigated tissues. This suggests reciprocal influence of PARP-1 and OGG1 on their expression and stability, and may contribute to progression of colon cancer. PARP-1 and OGG1 proteins level was several fold higher in polyps and CRC in comparison to normal colon tissues. Individuals bearing the <i>Cys326Cy</i>s genotype of OGG1 were characterized by higher PARP-1 protein level in diseased tissues than the <i>Ser326Cys</i> and <i>Ser326Se</i>r genotypes. Aforementioned result may suggest that the diseased cells with polymorphic OGG1 recruit more PARP protein, which is necessary to remove 8-oxodGuo. Thus, patients with decreased activity of OGG1/polymorphism of the OGG1 gene and higher 8-oxodGuo level may be more susceptible to treatment with PARP-1 inhibitors.</p></div

    In vivo evidence of ascorbate involvement in the generation of epigenetic DNA modifications in leukocytes from patients with colorectal carcinoma, benign adenoma and inflammatory bowel disease

    No full text
    Abstract Background A characteristic feature of malignant cells, such as colorectal cancer cells, is a profound decrease in the level of 5-hydroxymethylcytosine, a product of 5-methylcytosine oxidation by TET enzymes. Recent studies showed that ascorbate may upregulate the activity of TET enzymes in cultured cells and enhance formation of their products in genomic DNA. Methods The study included four groups of subjects: healthy controls (n = 79), patients with inflammatory bowel disease (IBD, n = 51), adenomatous polyps (n = 67) and colorectal cancer (n = 136). The list of analyzed parameters included (i) leukocyte levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2′-deoxyguanosine, a marker of oxidatively modified DNA, determined by means of isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry, (ii) expression of TET mRNA measured with RT-qPCR, and (iii) chromatographically-determined plasma concentrations of retinol, alpha-tocopherol and ascorbate. Results Patients from all groups presented with significantly lower levels of 5-methylcytosine and 5-hydroxymethylcytosine in DNA than the controls. A similar tendency was also observed for 5-hydroxymethyluracil level. Patients with IBD showed the highest levels of 5-formylcytosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine of all study subjects, and individuals with colorectal cancer presented with the lowest concentrations of ascorbate and retinol. A positive correlation was observed between plasma concentration of ascorbate and levels of two epigenetic modifications, 5-hydroxymethylcytosine and 5-hydroxymethyluracil in leukocyte DNA. Moreover, a significant difference was found in the levels of these modifications in patients whose plasma concentrations of ascorbate were below the lower and above the upper quartile for the control group. Conclusions These findings suggest that deficiency of ascorbate in the blood may be a marker of its shortage in other tissues, which in turn may correspond to deterioration of DNA methylation-demethylation. These observations may provide a rationale for further research on blood biomarkers of colorectal cancer development

    Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions—benign adenomas and inflammatory bowel disease

    No full text
    Abstract Background Active demethylation of 5-methyl-2′-deoxycytidine (5-mdC) in DNA occurs by oxidation to 5-(hydroxymethyl)-2′-deoxycytidine (5-hmdC) and further oxidation to 5-formyl-2′-deoxycytidine (5-fdC) and 5-carboxy-2′-deoxycytidine (5-cadC), and is carried out by enzymes of the ten-eleven translocation family (TETs 1, 2, 3). Decreased level of epigenetic DNA modifications in cancer tissue may be a consequence of reduced activity/expression of TET proteins. To determine the role of epigenetic DNA modifications in colon cancer development, we analyzed their levels in normal colon and various colonic pathologies. Moreover, we determined the expressions of TETs at mRNA and protein level. The study included material from patients with inflammatory bowel disease (IBD), benign polyps (AD), and colorectal cancer (CRC). The levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in examined tissues were determined by means of isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS). The expressions of TET mRNA were measured with RT-qPCR, and the expressions of TET proteins were determined immunohistochemically. Results IBD was characterized by the highest level of 8-oxodG among all analyzed tissues, as well as by a decrease in 5-hmdC and 5-mdC levels (at a midrange between normal colon and CRC). AD had the lowest levels of 5-hmdC and 5-mdC of all examined tissues and showed an increase in 8-oxodG and 5-(hydroxymethyl)-2′-deoxyuridine (5-hmdU) levels. CRC was characterized by lower levels of 5-hmdC and 5-mdC, the lowest level of 5-fdC among all analyzed tissues, and relatively high content of 5-cadC. The expression of TET1 mRNA in CRC and AD was significantly weaker than in IBD and normal colon. Furthermore, CRC and AD showed significantly lower levels of TET2 and AID mRNA than normal colonic tissue. Conclusions Our findings suggest that a complex relationship between aberrant pattern of DNA epigenetic modification and cancer development does not depend solely on the transcriptional status of TET proteins, but also on the characteristics of premalignant/malignant cells. This study showed for the first time that the examined colonic pathologies had their unique epigenetic marks, distinguishing them from each other, as well as from normal colonic tissue. A decrease in 5-fdC level may be a characteristic feature of largely undifferentiated cancer cells

    Level of PARP-1 (A) and OGG1 (B) mRNA in normal colon tissue (n = 60), polyp (n = 24) and cancer tissue (n = 60).

    No full text
    <p>Center mark in the box indicates the medians of the samples. The length of each boxes (IQR, interquartile range) represents the range within which the central 50% of the values fell, with the vertical edges placed at the first and third quartiles. Whiskers show variability outside the upper and lower quartiles. <i>P</i> was obtained with the Mann-Whitney test.</p

    Comparison of the expression of OGG1 (A) and PARP-1 (B) protein in normal colon tissue, polyp and cancer tissue of adenoma (AD, n = 68) and carcinoma (CRC, n = 103) patients.

    No full text
    <p>Immunohistochemical detection in paraffin embedded sections stained with hematoxylin and eosin. Center mark in the box indicates the medians of the samples. The length of each box (IQR, interquartile range) represents the range within which the central 50% of the values fell, with the vertical edges placed at the first and third quartiles. Whiskers show variability outside the upper and lower quartiles. <i>P</i> was obtained with the Mann-Whitney test. Representative examples of the levels of PARP-1 protein in tissues of CRC patients determined by Western analysis. The analysis was performed on tumor and normal tissues of 41 CRC patients (C).</p
    corecore